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ABSTRACT 

A methodology to highlight changes in the landscape based on satellite image classification has been developed 

involving unsupervised and supervised approaches. 

With past acquisitions, ground truth data are in general not known, therefore the classification can only be unsupervised. 

These classifications provide labels but not surface types. The main difficulty lies in the interpretation of these classes. 

An automatic interpretation method has been developed to allocate semantics to classes thanks to a radiometric value 

catalogue. However, it requires radiometrically comparable images. After radiometric correction, the images are not free 

from defects; this is why a normalization method has been developed.  

We propose a specific methodology to evaluate changes consisting in regrouping classes of the same theme, smoothing 

and eroding contours without taking “mixels” into account and comparing the classified images to provide statistics and 

image changes. The different steps of the process are essential to avoid false changes and to quantify land cover change 

with a high degree of accuracy. Various statistical results are given: changes or no changes, types of changes, and crop 

rotations over several years.  

Land use /cover change (LUCC) can provide an estimate of carbon capture and storage. Reforestation, changing land use 

and best practices can increase carbon sequestration in biomass and soils for a period of several decades, which may 

constitute a significant contribution to the fight against the greenhouse effect. Deforestation, conversely, can lead to 

significant levels of CO2 emission. 

By application to the South-West region of Toulouse, we observe significant land cover changes over 11 years (1991- 

2002). The crop rotations are given for 4 years (year per year 2002-2005).  

1. INTRODUCTION  

Earth observation satellite images have been collected and stored for decades. Combining these satellite data, maps, 

geographical information systems and soil measurements, it is possible to improve the description of land surface states 

and processes. Data archiving enables the extension of analysis to the past and thus changes the way we analyze the 

landscape. 

Land cover/use change detection has been a major field of application for remote sensing since the first earth observation 

satellite. Since remote sensing data from earth orbit can be obtained repeatedly over the same area, it has become useful 

to monitor and analyze land cover change. Several digital change detection algorithms have been developed ([8], [16]). 

Most change detection methods are based on the data sets collected at two different times. The time lapse between two 

data sets depends on the change characteristic investigated. Seasonal and annual changes of vegetation cover have been 

frequently analyzed by using vegetation indices derived from multitemporal data sets collected at more than 2 different 

times [12]. Certain change detection methods, such as band rationing and differencing, are primarily determined by the 

data sets that have constant environmental characteristics of atmospheric conditions and vegetation phenology. 

Since it is difficult to maintain such constant environmental conditions among the multitemporal data sets to be analyzed, 

post-classification comparison methods are often used for analyzing land cover/use changes. They process each data set 

separately and only compare the classification results obtained from each data set [3]. However, this method assumes that 

the classification results are correct, which is not true in actual situations. 

This study attempts to develop a methodology which limits uncertainties at different levels to define land cover change 

from multitemporal classification using post-classification methods.  

                                                           
1
 danielle.ducrot@cesbio.cnes.fr 



The results from the land cover changes in Toulouse south west region and from crop rotation (every year for 4 years) 

will be used to determine carbon footprint (storage and emission). 

 

2. UNSUPERVISED CLASSIFICATION AND AUTOMATIC INTERPRETATION  

Ground truths are not always known, especially with old dates. The classification method can thus only be unsupervised. 

For land cover change detection, there are local variations depending on dates. Moreover, pixel-by-pixel classifications 

often have a salt and pepper appearance. This will induce false change. So, we have developed a fuzzy contextual 

algorithm of the ICM type (Iterative Conditional Mode) based on a Markovian model. This contextual method takes into 

account neighboring pixels [6]. We introduce segmentation to improve the contextual aspect of this ICM method. The 

applied segmentation algorithm is a multi-spectral temporal unsupervised process, so there is no need to select training 

data. This classification could be improved with the introduction of exogenic data such as GIS. Compared with 

traditional classification algorithms, ICM is robust and very open to the introduction of different rules, and can handle 

relatively complex and sophisticated relations among the spatial neighbor of the classes such as region given by 

segmentation. The same ICM principle is applied for supervised classification. 

2.1. Interpretation methods 

The partition of the image into N classes of unsupervised classification gives labels and not surface types. The main 

difficulty thus lies in the interpretation of the classes obtained by this kind of classification [12].  

Visual method: In a traditional way, classification interpretation is visual and, therefore, manual with the assistance of 

radiometric image composite color. Using his knowledge, the interpreter deduces the allocation to a class. This is easy to 

recognize from form: forest, mineral surfaces/built, rivers. For crops it is more difficult because of their rotation. At 

certain times, using composite color, winter crops can be differentiated from spring crops in particular with infra-red or 

NDVI images.  

Semi-visual method: For certain crops, a semi visual method is used to differentiate then by comparing their spectral 

and temporal signature with those of known ground truths from other years, but, preferably, after data normalization (see 

§ 3 below). Indeed, radiometric values from different years must be comparable. This method is however relatively 

empirical, and the spectral /temporal signatures for certain classes to be interpreted do not really correspond to a 

particular class. 

2.2. Interpretation by automatic recognition 

An automatic recognition method was developed to assign semantics to unsupervised classification classes more 

systematically and less empirically. The interpretation is based on statistical radiometric values of classes established 

from ground truth samples from different years (average, standard deviation, minimum, maximum, covariance matrix). A 

class to be interpreted is assigned to the nearest class of a land cover catalogue of known thematic class, using several 

distances and divergences calculation. It is necessary to match anniversary dates of the satellite images (similar 

phenologic stage). 

For each unsupervised class, the interpretation process assigns several distances: Bhattacharrya, Mahanalobis, Euclidean 

distance, and the maximum of probability with a Gaussian law, to the three most likely thematic classes. The definitive 

interpretation is given by rating these classes using a degree of certainty. 

An example is given in table 1; the unsupervised classification statistics of 1991 are compared with those of 2002, 2003. 

For each unsupervised class the nearest thematic class is indicated on the first line for each statistical method 

(Bhattacharrya, Euclidean, and Maximum likelihood). Then, the next nearest classes are given in decreasing order. For 

example, in table 1, class 9 most frequently appears as a 1
st
 choice, so the unsupervised class will be allotted to this class. 

The algorithm automatically computes the assignment to the “best” class with a confidence index. 

We may note conflicts between several classes; in this case, the unsupervised class belongs to several thematic classes, so 

a special class is created. For example if a class contains wheat, rapeseed, we obtain the Wheat/Rapeseed class. 

Confidence index: for each class the algorithm gives a certainty degree on its assignment, a number ranging between 0 to 

1, 1 being the maximum certainty: for example, class 1 of the unsupervised classification of 1991, is assigned to class 9 

(Sunflower) with a degree of certainty of 0.83. 



Year  2002 2003 

Dist.  bhatta euclid likelihood mahan bhatta euclid likelihood mahan 

Class 1 to interpret 

1st 9 2.084 9 246.79 9 74.316 9 4.083 12 1.625 10 245.294 10 65.389 12 3.6056 

2nd 5 2.173 11 307.03 5 124.64 5 4.169 4 1.820 9 324.493 9 82.485 4 3.8158 

3rd 4 2.236 10 326.56 8 128.72 4 4.229 20 1.881 20 365.058 8 89.576 20 3.8798 

Class 2 to interpret 

1st 14 1.124 14 89.318 16 136.40 14 2.998 7 1.475 6 210.137 17 51.879 7 3.435 

2nd 16 2.27 6 158.824 20 142.46 16 4.262 4 1.915 4 239.455 7 59.76 4 3.914 

3rd 4 2.281 4 259.785 21 170.79 4 4.272 17 2.378 7 254.653 4 63.04 17 4.362 

Class 3 to interpret 

1st 4 0.768 4 117.337 4 67.465 4 2.479 17 1.327 6 181.081 17 36.678 17 3.259 

2nd 5 0.934 5 127.075 20 109.26 5 2.734 16 1.751 7 186.755 16 48.913 16 3.743 

3rd 16 0.956 16 130.216 16 115.59 16 2.766 7 1.764 4 203.983 15 60.747 7 3.757 

Table 1: automatic interpretation: divergences calculated with the 4 methods over 2 years (bhatta, eucli, maha: Bhattacharya 

Euclidean Mahanalobis distance, likelihood: maximum likelihood), the chosen number of reference class is followed by distance 

and divergence measurement. 

 

3. NORMALIZATION 

Automatic interpretation needs to have comparable data. According to Bruzzone L., ([1], [2]), it is not possible to obtain 

a perfect alignment of multitemporal imagery due to the presence of local defects in images geometries. Consequently, 

residual misregistration results in inevitable additional noise, the “registration noise”. It is essential to carry out the most 

efficient geometric and radiometric corrections to eliminate atmospheric effects and differences caused by the use of 

different sensors [18]. The method used allows estimating surface reflectance from Top Of Atmosphere (TOA) reflectance 

and the knowledge of the state of the atmosphere (water vapor, ozone and aerosol contents) [14].  

After radiometric and geometric corrections, to minimize uncorrected radiometric disturbances and misregistration, a 

normalization method derived from Du et al [5], has been developed. This method is based on the assumption that the 

totality of disturbing effects can be approximated by linear functions. Pseudo-invariant features (PIFs) are used to 

determine the normalization coefficients. Multitemporal images of the same area are normalized to a common reference 

level based on the following formula: 

 Q����i� �  Q
�i� � α� 
 β
          j � 1,2,3, … ,m (1) 

Where i is the index of the PIF pixels, j is the index of the image, m is the total number of the images, Qref is the 

radiometric reference level, Q is the image value, α is the gain and β is the offset of the normalization. 

The authors also describe an algorithm for statistical, semi-automatic selection of pseudo-invariant features (PIFs) on an 

image-to-image band-by-band basis. To determine PIF pixels and carry out the normalization, a bitemporal PCA is first 

applied to the same spectral bands of two different dates. The authors use manual thresholding to ensure the correct 

determination of the primary major axis. Pixels closest to the primary major axis are characterized by a strong linear 

interdependence thus are selected as PIF candidate pixels. After quality control of the resulting PIFs, transformation 

coefficients are calculated and a linear regression is performed to transpose radiometric values to the reference level. The 

regression coefficients can be determined by using known ground reflectances, PIF statistics of all image pairs, or one 

image as a reference. A post-normalization quality control step is also included in the method. 

Some modifications and completions are implemented to enhance robustness mainly by decreasing manual 

interaction [10] and [11]. 

First, as mentioned above, pixels showing abrupt changes which are likely to influence the determination of the 

bitemporal PCA major axis have to be removed. Du et al [5] apply user-determined thresholds for each band to reject 

clouds and surface waters, and a difference threshold to reject pixels characterized by a large magnitude of change 

between the two dates. However, manual determination of thresholds for each band may be a time-consuming effort, and 

it includes subjective elements in the normalization process. Moreover, a simple difference threshold determines two 

parallel lines in 45° direction in the bitemporal scattergram, which can result in a loss of PIF candidate pixels at the 

highest and lowest values, if the principal major axis slope differs significantly from unity (Figure 1).  



To enhance robustness and automaticity by using objective spectral difference measures and statistical thresholds, 

another method is developed and presented here. A multitemporal normalized band difference (MNBD) is calculated 

separately for each spectral band, with the following formula: 

 
MNBD��� �

B��� � A���

B��� 
 A���
 (2) 

where MNBD is the normalized multitemporal band difference for the pixel with coordinates (x,y) of band i, A and B are 

geometrically rectified images of the same area taken at two different dates, Axyi and Bxyi are the values of pixel with 

coordinates (x,y) of band i of image A and B, respectively. Note that the resulting MNBD image has a range between –1 

and 1 with a sign depending on the order of the images in the numerator, and a symmetric distribution.  

In the next step, mean and standard deviation (SD) of MNBD images is calculated, and then the values outside the 

interval [Mean ± n * Standard Deviation] are masked, where n is the selected MNBD threshold. The mean of MNBD 

values is chosen because in a first approximation, one can assume that atmospheric effects and anisotropic reflectance of 

surface elements lead to linear radiometric distortions, and that the distribution of landscape changes is symmetric. If 

there were no radiometric distortions, the mean value would be zero.  

From a mathematical point of view, [Mean ± n * Standard Deviation] masking defines two lines starting from the origin 

of the multitemporal scattergram (Figure 2). The angle of the lines to the coordinate axes is defined by the MNBD mean 

value, while the angle between the two lines is defined by the standard deviation.  

 

 

    

 

Fig 2: Multi-temporal scattergram showing the 

proposed method for pre-PCA pixel rejection on the 

radiometric values of two different image 

acquisition dates (A and B). Multi-temporal 

normalized band difference (MNBD) thresholds are 

determined statistically. Pixels showing an MNBD 

value close to the mean (µMNBD) are kept. Here, a 

one-standard-deviation (σMNBD) threshold is used. 

The majority of pixels containing clouds, local 

aerosol effects and other spectral changes are 

masked. The remaining pixels (in the bright 

triangle) are used as PIF candidates 

Fig 1: Multi-temporal scattergram showing the 

original method for pre-PCA pixel rejection on the 

radiometric values of two different image 

acquisition dates (A and B). Water and cloudy 

pixels are rejected using band-specific minimum 

and maximum thresholds (Amin, Amax, Bmin, Bmax). 

Pixels showing a large spectral difference between 

the two dates are also rejected using Diffmax 

difference threshold. The remaining pixels (in the 

bright polygon) are used as PIF candidates. Note 

that a large number of possible PIF candidate pixels 

are lost, while cloudy pixels are kept. 



After initial masking of abruptly changed pixels, all remaining pixels of the band pair are used in a bitemporal PCA, as 

described in [5], to obtain the two principal axes. The first principal axis contains unchanged pixels. Pixels with 

radiometric values within a range l from the primary major axis are selected by using statistical thresholds calculated 

from the second principal axis. The proposed algorithm is illustrated using multi-temporal scattergrams in Figures 3. 

To determine the range l around the primary major axis to select PIF pixels, Du et al [5] use an iterative method with 

linear correlation coefficient (r) calculations as an internal quality control. They determine an initial range l, and calculate 

correlation coefficient for the pixels within the range ± l around the principal axis. They accept PIF candidates if r≥ 0.9; 

if not, radiometric and maximum difference thresholds as well as the range ± l along the primary major axis have to be 

improved. However, this procedure still contains subjective elements. Moreover, decreasing the range ± l leads to a 

strong decrease of the number of PIF pixels, while a high percentage of the image is an advantage of “no-change 

regression” methods; thus radiometric normalization errors are widely distributed across all major spectral classes [19]. 

With a sufficiently small value of l, a good correlation can be reached, but the final PIF accuracy and reliability can 

decrease due to the small number of PIF pixels. 

 

 

 

Hence, the method is modified to be based on statistical calculations. Mean and standard deviation are calculated for the 

second principal band. PIF pixels are identified by the range of mean ± m standard deviations, where m is the selected 

threshold for principal component masking. Using statistical instead of rigid threshold, the extent of the second principal 

component (thus the multitemporal variability) is taken into account. 

Linear correlation coefficient is then calculated for PIF quality assessment with a predetermined acceptance threshold; if 

this threshold is not reached, PIF selection has to be repeated with different MNBD and l values. 

The next step is the calculation of normalization gains and offsets by using the statistics of the PIF pixels by the 

following equations (modified from [5]): 

 
gainBA" �

σA"
σB"

 (3) 

 
offsetBA" � mA"

�
σA"
σB"

� mB"
 (4) 

Fig 3 c: PIF pixels after MNBD 

and mean +/- 0.5 SD second 

principal component masking. 

Pixels closest to the principal axis 

are determined and identified as 

PIFs. If the correlation criterion is 

met (R2>0.95), PIF pixels are 

accepted. 

 

Fig 3 b: PIF candidate pixels 

after mean +/- 1 Standard 

Deviation MNBD masking. PC 

1’ stands for the recalculated 

principal axis. 

 

 

Fig 3 a: Multi-temporal scattergram 

showing the effect of clouds, local 

aerosols and land cover changes on the 

determination of the principal axis. A 

and B are two different image 

acquisition dates, PC 1 stands for the 

principal axis. Note that PC 1 is 

determined erroneously due to cloud 

and land cover change effects. 



where gainBAi and offsetBAi are the gain (α) and offset (β) from Equation (1) to convert the spectral band i of image B to 

the reference level A, σAi and σBi are the standard deviations of the PIF pixels in the spectral band i of the image B and 

the reference level A, respectively; σAi and σBi are the mean values of the PIF pixels in the spectral band i of the image 

B and the reference level A, respectively 

A final step, by a new MNBD calculation, masking, and PCA of the corrected bands, the following method makes it 

possible to assess the normalization quality for individual images, as described in [5]. Slope of the principal major axis 

(SL) is calculated. The closer SL to unity, the better the normalization quality is considered to be. 

However, it would be reasonable to evaluate the overall radiometric normalization quality over the time series; therefore, 

another method is suggested here. First, most stable PIFs are identified, (pixels that are selected as invariants (as 

described above) on all images of the time series in a given spectral band). For each of these PIFs pixels, the temporal 

standard deviation (SD) is calculated from the reflectance values of all dates; then, the average of these standard 

deviation values is computed. As the most stable PIFs are supposed to show constant reflectance over the entire period, 

the resulting spatial average of the temporal standard deviations corresponds to the “measurement error”.  

 

4. CHANGE DETECTION 

The complexity of the change detection procedure depends on the characteristics of data sets. Selection of a single sensor 

series, low cloud cover and matching dates of two image data can restrict complexity and uncertainty. The difference 

between spatial resolution and spectral band of two image dates acquired with two sensors complicates direct comparison 

of data to detect changes [20]. The most common method that can be used to detect changes in multiresolution data sets 

is post-classification approach [3] and [4]. 

In the post-classification approach, images belonging to different annual dates are classified individually. The change 

detection step uses the processed information from classification, not the original data. The comparison of these 

individual classifications minimizes the problem of atmospheric and sensor differences amongst the image dates [16]. 

The classification results are then compared directly and the area of changes extracted [8], [16] and [20].  

Accuracy dependence of the classification results is the main disadvantage of this method. Poor classification accuracy of 

individual classification leads to propagation of uncertainties in the change map, which results in inaccurate information 

of land-use changes. Shi et al [17] reported uncertainty propagation in classification-based change detection. The 

accuracy of the change product is the multiplication of the accuracies of the thematic maps: error of the source image, 

classification methods and determination of changes.  

The change detection post-classification methodology proposed in this paper is supervised and unsupervised. The steps 

previously described constitute the first part of the change detection system to minimize errors: fuzzy contextual 

classification, normalization and automatic interpretation. A specific protocol has been developed, as automatic as 

possible in order to better assess the changes. The principle consists in:  

� groupings classes and sub classes to main categories according to the study goal. For example, we group forest 

classes and crops classes for CO2 storage and emission studies 

� smoothing of the image to remove isolated pixels 

� eroding contours to reduce the residual errors and not considering  mixels 

� comparing of classified images: cross-tabulating statistics: the algorithm provides a series of statistics 

according to the desired study theme, giving the percentages and areas of change or no change, and type of 

changes.   

� creating the change map from the comparison, with possibly of dilating this image, to remove the eroded 

aspect of the image 

� crop rotation over several years 

4.1 Importance of contour erosion of the classification image 

Based on the fact that most important misregistration effects can be observed at the edges of homogeneous regions, 

erosion eliminates pixels that form the border between two classes [19]. Depending on the satellite track, border pixels 

will be assigned to neighboring classes which may be different depending on the acquisition [15]. For example in the 

case of a bank at the edge of a river, the satellite collects an average of two classes (river and bank): the pixel can switch 

to the "bank" or to the river (river for one date, bank for another date, for the same scene). This is similar for all edge 



pixels, which are mixed pixels (mixels). Contour erosion is necessary not to distort the statistics. The mixels are thus 

eliminated and the statistical results will be closer to reality. This also limits the problem of residual multitemporal shift 

(residual geometric errors). 

4.2. Comparison of classified images from change matrices  

Object-level change detection approaches can also minimize the effect of residual geometric errors. For example, 

Bruzzonne et al [2] and Jensen et al [7] improved change-detection accuracy with an adaptive parcel-based technique 

applied to small homogeneous regions shared by a multitemporal image pair. The object-based aspect is integrated in the 

contextual classification. Also, we compared parcel-to-parcel using the segmentation image; however in practice, 

agricultural parcels are sets of the same crop, which may vary for another year due to crop rotation. This generates 

statistical errors. In our case, more accurate results were obtained with pixel-by-pixel comparison.  

If a class is different in the two classifications, a new class is a change class created. For example, a pixel allocated to the 

class "Wood" for one year becomes "Crop" for another year, then the class "Wood to Crop" will be generated. The 

algorithm presents various statistical results expressing class change in a matrix in terms of count and frequency (see 

example in table 2 & 3).  

4.3. Crop rotation over several years 

The method compares N classifications of N years, in order to follow landscape change and / or crop rotations or other 

rotation. The comparison is done automatically in several steps. The algorithm processes the first 2 images of the 

sequence, then the next image with the previous comparison result image. Thus we automatically obtain, the change 

matrix between all the images in terms of area and frequency: monoculture, annual biannual and triennial according to 

the years studied. 

4.4. Land cover/use and carbon storage - emission 

Carbon sequestration is the process by which growing trees and plants absorb CO2 from the atmosphere and turn it into 

biomass (e.g., wood, leaves, etc.). Deforestation, conversely, can lead to significant levels of CO2 emissions. [13]. 

The storage or emission of CO2 depends on the nature of the soil and its evolution of it over time. For example:  

       - Wood stores carbon, but differently according to its age and until saturation by CO2. Its absorption is maximal at 

the beginning and tends to decrease over time. Felling a tree, however, will release CO2 into the atmosphere. 

       - Absorption does not occur in the same way as it does in crops  

Land cover/use can be used to calculate carbon footprint which involves studying the interaction between the biosphere 

and CO2 in order to better understand its storage capacity. Humane action through reforestation, changing land use, crop 

rotation and best practices can increase carbon sequestration in biomass and soils for period of several decades, which 

may constitute a significant contribution to the struggle against the greenhouse effect. 

Satellite image land cover change mapping determines through classifications the storage and emission of CO2 in soil.  

5. APPLICATION TO THE SOUTH-WEST REGION OF TOULOUSE (FRANCE) 

 
Land cover change maps of the South-west of Toulouse were performed using classifications dating back to 1991 - 2002, 

then from classifications dating to 2002-2005 in order to study crop rotation. The satellite images provided by SPOT 

Image cover a surface of approximately 50*50 km². The landscape of this area is strongly impacted by human, with 

omnipresent crops.  

5.1. Land cover changes from 1991 to 2002  

 For the year 1991, in the absence of ground truth, an unsupervised classification has been performed with three scenes 

from the satellite SPOT: May 22, August 3, and September 24, only available on the zone studied. Classes are 

automatically interpreted, thanks to 2002, 2003, 2004, 2005 ground truths.  

5.1.1. Unsupervised classification interpretation of 1991 by automatic recognition 

After normalizing the Spot images of 1991 with 2002 images, the automatic interpretation was performed.  



The radiometric values of 1991 classes are compared with those of the reference classes (2002, 2003, 2004), at the same 

phenologic stage (nearest possible date), thanks to calculations of multi spectral -temporal distances and probability (see 

§ 2) with the reference sample sets. Thus, a class to be interpreted is assigned to a known thematic class from our land 

cover catalogue. 

The three dates are sufficient to discriminate between six classes corresponding to main land cover categories (Wood, 

Winter Crops, Summer Crops, Meadow, Fallow, Water and Mineral Areas). The distribution of these principal classes is 

expressed in proportion to the entire studied zone: Wood 12.83%, Winter crops 17.24%, Summer crops 48.475%, 

Meadows 6.478%, Fallow /Waste lands 12.669%, Mineral areas 2.23%. 

5.1.2. Supervised classification (2002)  

Spot images supervised classification of 2002 produces a map of 16 land cover classes: wooded formations (Leafy trees, 

Coniferous tree, Eucalyptus), crops (Wheat, Barley, Rapeseed, Corn, Sunflower, Sorghum, Soybean, Pea), grassland 

(Meadows and Fallow), water (River, Lake, Gravel pit) and Mineral surfaces/Built. Classification precision given by the 

confusion matrix using checking samples gives an accuracy of 87.4% and Kappa of 88.7% (we obtain higher percentages 

with training samples). After image smoothing, grouping 2002 classes identically to 1991 and edge erosion, the 

classifications are compared (1991 - 2002) and thereby giving the description of land cover change. 

5.1.3. Land change analysis 

The established protocol consists in determining what class replaces what class. The outcomes are expressed as change 

matrices and a map. Land change analysis provides various statistics levels related to the land cover management mode. 

For example, conversion from: 

� Crop 1 to Crop 2 does not change the land, it only concerns agricultural practice (crop rotation); 

� Crop to Meadow / Fallow may reflect the influence of agricultural policy (land fallow mandated by the 

1992 CAP (common agricultural policy)) 

�  Crop to Wood or Mineral surfaces/built indicates a net change of land use planning indicating decline of 

the UAA (Utilized Agricultural Area) under the influence of various pressures of socio-economic 

development. 

� Wood to another class belonging to a new category of non-forested land (crop or mineral surfaces/built) 

indicates a deeper change of allotment of space. We must therefore seek the cause or determinants to 

measure the impact in terms of landscape and ecology. 

 

 Classification 2002 

Classification 1991 

 
Wood 

Winter 

crop 

Summer 

crop 
Fallow 

Meadow 

Grassland 

Mineral 

Surfaces/built 

Wood 70.89 2.51 3.01 10.40 10.72 0.09 

Winter crop 0.12 41.99 42.04 2.32 12.37 0.09 

Summer crop 0.47 32.56 53.79 2.12 10.03 0.15 

Fallow 1.02 12.35 14.37 6.60 61.90 0.06 

Meadow-Grassland 0.65 13.18 17.84 2.72 65.18 0.07 

Meadow-Grassland/Fallow 8.00 20.58 25.60 7.19 36.26 0.12 

Mineral Surfaces/built 2.64 2.38 4.67 2.78 7.15 61.17 

Table 2: Changes matrix (frequencies) (1991-2002)  

Changes over this 11 year period are significant. They make it possible to highlight facts evolution trends of the regional 

landscape influenced by the policies of land management: we observe a slight retreat of the Wood class and an increase 

of Grassy surfaces (table 2 & 3). 

 

 



5.1.3.1. Stability: 77.97% of land between 1991 and 2002 does not change  

� 70.09% of the Wood class  is unchanged, which represents 8.17% of the area  

� 84.71% of the Crop is unchanged at 57.41% of the area 

� 54.62% grassed surfaces unchanged, 9.59% of area, 38% went to the crops, or 6.67% of area 

 

Surfaces do not include the eroded areas. 

Table 3: frequencies are related to the image changes over the surface of the image compared to the surface of this image (without 

the eroded area)  

5.1.3.2. Changes (approximately 22%)  

� Wooded surfaces suffer 30% change mainly to grassy surfaces (22.6%), 3.6% of area image; this concerns mainly 

small patches and field wooded borders than forest. The rest of conversion is negligible. 

� Conversion to wooded areas by crop is negligible. We note some plantations, wooded areas into peri-urban, young 

plantations which have grown. 

� Crops are most stable, 13.79% have change to grassy surfaces (8.6 %of the area). But Fallow and Meadow fits into 

the crop rotation cycle. There are more grassy surfaces to crop change than the reverse. Culture to Meadow / Fallow 

may reflect the influence of agricultural policy (land fallow mandated by the 1992 CAP (common agricultural 

policy)). But these results must be moderated: all kinds of grassy lands Fallow and Meadow, Waste lands, are very 

similar radiometrically, they are difficult to distinguish. Some of these changes are due to confusion between these 

classes. Note that the class "Meadow / Grass" may contain lawns, parks.....  

Classes unchanged Numbers Surface ha 

Land cover 

(%) in the 

resulting  

change image  

Classes 

changed or not 

(%) 1991 

versus 2002 

 

Wood 181925 7277.00  8.273 70.89 

Crop 1234114 49364.56  56.121 85.42 

Grassy land 178077 7123.08  8.098 53.79 

Water 11684 467.36  0.531  

Mineral Surface / Built 27343 1093.72  1.243 55.95 

total unchanged  65325.72 74.266  

1991 Changes  (2002)     

Wood � 

Crop 18939 757.56  0.861 5.52 

Grassy land 54214 2168.56  2.465 21.12 

Mineral Surface / Built 6105 244.20  0.278 2.38 

Total conversion wood 79258 3170.32 3.604  29.54 

Crop � 
Grassy land 190295 7611.80  8.654 13.17 

Mineral Surface / Built 13764 550.56  0.626 2.47 

Grassy land � 

Wood 16829 673.16  0.765 5.08 

Crop 127983 5119.32  5.820 38.66 

Mineral Surface / Built 8194 327.76  0.373 2.47 

Mineral Surface / 

Built � 

Wood 369 14.76  0.017 0.76 

Crop 14154 566.16  0.644 29.05 

Grassy land 6863 274.52  0.312 14.08 

Green urban area � 

Wood 781 31.24  0.036 0.80 

crops  41626 1665.04  1.893 42.55 

Fallow, Meadow 42957 1718.28  1.953 43.91 

Diverse    1.09  

Total changes   2176622 21739.16 24.715  



� Conversion to grassy areas has occurred from every class. 

 

� Urbanization: a emerging of urbanization is noticed: 1.95% of the Crops classes, Wooded area, Meadows, Fallow, 

Wood  

� Mineral surfaces/Built class sees its surface growing by approximately 1.5%. This class includes roads, bare soil, 

sometimes confused with winter crop stubble, if the date of March or April does not exist. 

5.2 Evolution of the land cover between 2002 and 2005; crop rotation 2005 ���� 2004 ���� 2003 ���� 2002 

The same principle as before was applied for the study of the change between 2002 and 2005. For these years, 

classifications are supervised. 

As previously, main changes are evaluated:  

- conversion Forest to Crop, Meadow to Crop (and vice versa), these change are important for storage or emission 

of atmospheric carbon 

- Mineral surfaces/Built in order to estimate a possible urbanization. 

During this period, the change frequencies are low except for Fallow which varies with Meadow, but we know that these 

two classes are often confused. Crops remain stable; urbanization is not yet very intense except near Toulouse. The 

forest, main subject of study for carbon storage, does not show very significant changes. 

 

2002 � 2003�  2004 

� 2005 

Pixel 

number 

2002� 

2003� 

2004� 

2005 

area  

(ha) 

Percentage 

 = class pixel 

number/total 

pixel number 

of the eroded 

image 

2002 � 2003 � 

2004 � 2005 

Pixel 

number 

2002� 

2003� 

2004� 

2005 

area  

(ha) 

Percentage = 

class pixel 

number/total 

pixel number 

of the eroded 

image 

monoculture    
Every 3 years  
(main changes) 

   

Corn-Corn-Corn-Corn 136422 5456.8 6.339 
Wheat-Wheat-

Wheat-Sunflower 
84391 3375.64 3.922 

Wheat-Wheat-Wheat-

Wheat 
8891 355.64 0.42 

Corn-Corn-Corn-

Wheat 
22440 897.6 1.043 

Soybean-Soybean-

Soybean-Soybean 
58 2.32 0.003 

Corn-Corn-Corn-

Sunflower 
21931 877.24 1.019 

Sunflower-Sunflower-

Sunflower-Sunflower 
1931 77.24 0.09 

Sunflower-

Sunflower-

Sunflower-Wheat 

17116 684.64 0.795 

2 crops    
Wheat-Wheat-

Wheat-Rapeseed 
13859 554.36 0.644 

Bi-annual  

(main changes) 
   Corn-Corn-Corn-Soy 10682 427.28 0.496 

Wheat-Sunflower-

Wheat-Sunflower 
402924 16116 18.72 

Wheat-Wheat-

Wheat-Corn 
10483 419.32 0.487 

Wheat-Corn-Wheat-

Corn 
29262 1170 1.36 

Wheat-Wheat-

Wheat-Corn 
10483 419.32 0.487 

Every 2 years        

Wheat-Wheat-

Sunflower-Sunflower 
30826 1233.0 1.43     

Wheat-Wheat-Corn-

Corn 
8153 326.12 0.38 Rotation    

Corn-Corn-Sunflower-

Sunflower 
3393 135.72 0.16 Total 2 crops 690170 27606.8 32.07 

Corn-Corn-Soy-Soy 592 23.68 0.03 Total 3 crops 210847 8433.88 9.8 

Soybean-Wheat-Wheat- 

Soybean 
435 17.4 0.02 Total 4 crops 7937 317.48 0.37 

Table 4: crop rotations: monoculture, biannual, triennial … 



Crop rotation 

For crop rotation study, the crops are not grouped: they are considered independently. The principle of change 

comparison in land use of the four images: 2002, 2003, 2004 and 2005 is the following: 

1. 2002 image compared to 2003, the results are: a change image 2002- 2003 and a change matrix.  

2. The resulting 2002-2003 image is compared with the 2004 classification and the result is a change image 2002-2003-

2004, with its change matrix  

3. The 2002-2003-2004 resulting image is compared with the 2005 classification and the result is the image changes 

2002-2003-2004-2005, and its change matrix 

Resulting images cannot be displayed, the limit is imposed by its classes number, which exceed the 255 classes for 

maximum screen viewing (they must be grouped) .The algorithm mainly keeps the significant changes and statistics on 

the land rotations. 

The most important rotations are those of Wheat which generally rotates every year mainly with Sunflower. Rapeseed 

and Barley change every year (table 4). 

Results 

- monoculture is mainly Corn; it covers 6.34% of the territory, the others are negligible 

- Main rotation: Wheat and Sunflower: biannual rotation (20% of eroded surface with 18.7% Wheat-Sunflower)  

- 32% are occupied by crops of 2 types (mainly Sunflower and Wheat) in rotation from 1 to 4 years 

- 9.8% of rotation out of 3 crops 

- rotation with 4 crops is negligible 

 

6. CONCLUSION 

Accurate change statistics over several years can be obtained here using the protocol presented …. Every step is 

important: fuzzy contextual classification, automatic interpretation of the unsupervised classification, edge erosion of the 

classification. Results are facilitated depending on image acquisition conditions. Selection of a sensor series, low cloud 

cover and matching dates of two image data can restrict uncertainty. It is essential to choose appropriate calendar 

acquisition dates to obtain correct results. On the other hand, on anniversary dates, phenological discrepancies due to 

local precipitation and temperature variations can appear as well [4].  

This protocol was first tested on areas where we had ground truths. The overall PCC (pixel corrected classes) were 

improved with respect to direct comparison classification. Change statistics have been verified with agricultural 

European agency statistics and state agency statistics. The advantage of these statistics is they provides quantitative 

measurements, particularly rotations statistics.  

Land cover changes from wood, crop, fields are important to evaluate the emission and storage of CO2, which depend on 

the nature of the soil and its changes over time. For example: wood stores carbon, while the cutting of a tree will release 

CO2 into the atmosphere. Absorption does not occur in the same way in wood and in crops. 

In post-classification change detection analysis, the minimization of classification errors is fundamental. Thus further 

work will be requires to improve the fuzzy contextual method presented. In the case of unsupervised classification, the 

improvements will be in automatic interpretation. 
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